

Welcome to pyflowline’s documentation!

	1. What is PyFlowline?
	1.1. Overview

	1.2. Development

	1.3. Objective

	1.4. Target audience

	1.5. Important notice

	2. Quickstart

	3. Installation
	3.1. Overview

	3.2. Requirements
	3.2.1. Option A

	3.2.2. Option B

	3.2.3. Visualization

	4. Data model
	4.1. Basic

	4.2. Spatial references and computational geometry

	4.3. File I/O
	4.3.1. Configuration files

	4.3.2. Inputs

	4.3.3. Outputs

	5. Algorithm
	5.1. Overview

	5.2. Flowline simplification
	5.2.1. Dam associate flowline burning

	5.2.2. Flowline vertex extraction

	5.2.3. Split flowline

	5.2.4. Flow direction correction

	5.2.5. Remove small river

	5.2.6. Remove braided flowlines

	5.2.7. Flowline confluence extraction

	5.2.8. Merge flowline

	5.2.9. Flowline confluence definition

	5.2.10. Stream segment index

	5.2.11. Stream segment order

	5.2.12. Split flowline by length

	5.3. Mesh generation
	5.3.1. Structured mesh

	5.3.2. Unstructured mesh

	5.4. Topological relationship reconstruction
	5.4.1. Mesh and flowline intersection

	5.4.2. Topological relationship reconstruction

	5.4.3. Remove returning flowline

	6. Application
	6.1. Overview

	6.2. Model simulation
	6.2.1. Step 1

	6.2.2. Step 2

	6.2.3. Step 3

	6.2.4. Step 4

	6.2.5. Step 5

	6.2.6. Step 6

	6.2.7. Step 7

	7. Visualization

	8. References

	9. History

	10. Authors

	11. Support

	12. Contribution

	13. Frequently Asked Questions

	14. API Reference
	14.1. Class
	14.1.1. Basic elements

	14.1.2. Mesh cell

	14.1.3. Others

Addendum

	Glossary
	Structured mesh

	Unstructured mesh

	Great circle

	DGGS

	TIN

	MPAS

Indices and tables

	Index

	Module Index

	Search Page

1. What is PyFlowline?

1.1. Overview

PyFlowline is a mesh-independent river network generator for hydrologic models.

River networks are landscape features typically represented using vector layers. However, most hydrologic models rely on regular grids to discretize the spatial domain and cannot directly ingest vector features into the model. As a result, hydrologic models usually implement a so-called stream-burning process to convert the vector-based river network into a mesh-based river network.

However, all the existing stream-burning methods only support the structured meshes and there are also some other limitations. For example, existing stream-burning methods always treat the vector river networks as a binary mask and cannot describe the topology near river confluences and meanders.

PyFlowline solves this issue by using a mesh-independent approach that intersects the vector river network and mesh to reconstruct the conceptual river network.

1.2. Development

PyFlowline is developed in an open-source, public repository hosted on Github:
https://github.com/changliao1025/pyflowline

1.3. Objective

All the existing river network representation methods (except vector-based) only support the structured rectangle meshes.
As a result, if a spatially-distributed hydrologic model uses the unstructured mesh as the spatial discretization, there is no way to represent the river network.

To close this gap, PyFlowline was developed using a mesh-independent approach. At its core, PyFlowline uses the intersection between the vector river network and mesh to reconstruct the conceptual river network.

1.4. Target audience

PyFlowline is an advanced modeling tool for hydrologists and hydrologic modelers.
Users of PyFlowline should be familiar with basic concepts in Geographic Information System (GIS), including vector and raster data, coordinate systems, and projections.

1.5. Important notice

	PyFlowline is designed to run at regional to global scale, so all the datasets use the geographic coordinate system (GCS) with the WGS84 datum. See more details at https://pyflowline.readthedocs.io/en/latest/data/data.html

	Visualization of the PyFlowline outputs is only experimental. This feature is not fully developed yet. There is ongoing effort to use the PyEarth python package to provide this feature.

2. Quickstart

Installing and running PyFlowline requires some basic knowledge of the Python ecosystem.

Besides, configuring a PyFlowline simulation requires some knowledge of Geographic Information System (GIS) and computational hydrology.

Users can run a PyFlowline simulation in the following steps:

	Create a new Python environment using Conda, and activate the new environment.

	Install the package using conda install -c conda-forge pyflowline. Conda will automatically install all the required dependencies.

	Clone the latest PyFlowline repository from https://github.com/changliao1025/pyflowline.

	Download the additional large MPAS mesh file lnd_cull_mesh.nc from https://github.com/changliao1025/pyflowline/releases/tag/0.2.0 and move it under the data/susquehanna/input folder.

	Open the examples/susquehanna/pyflowline_susquehanna_mpas.json file and make the following changes:
- Change sWorkspace_output to the full path to the directory where you want to save the output (e.g. /full/path/to/pyflowline/data/susquehanna/output).
- Change “sFilename_mesh_netcdf” to the full path to lnd_cull_mesh.nc.
- Change “sFilename_mesh_boundary” to the full path to data/susquehanna/input/boundary_wgs.geojson.
- Change “sFilename_basins” to the full path to examples/susquehanna/pyflowline_susquehanna_basins.json.

	Open the examples/susquehanna/pyflowline_susquehanna_basins.json file and change “sFilename_flowline_filter” to the full path to data/susquehanna/input/flowline.geojson. Ignore the other settings in these json files for now.

	Open the preferred Python IDE (Visual Studio Code recommended) and run the examples/susquehanna/run_simulation_mpas.py Python script. Optionally, you can also run the notebooks/mpas_example.ipynb notebook. The visualization of the model outputs is only experimental, and you can use other tools to visualize the model outputs.

	You should produce a list of model outputs in the data/susquehanna/output folder or the user-specified output folder.

If you encounter any issues, refer to the FAQ or submit a GitHub issue (https://github.com/changliao1025/pyflowline/issues).

3. Installation

3.1. Overview

This document provides the instruction to install the PyFlowline Python package.

Two different options are provided below.

3.2. Requirements

We recommend to use the Conda system to install the PyFlowline package.

Conda can be installed on Linux, MacOS, and Windows systems.
Please refer to the conda website for details on how to install Conda:
https://docs.conda.io/en/latest/

After Conda is available on your system, you can create a conda environment for your application of PyFlowline.
Then use Option A or B to install PyFlowline in the newly created environment.

3.2.1. Option A

In this option, you will use conda to install the released PyFlowline package, but not necessarily the latest version.
Conda will automatically install all the dependency packages.

Before you install the package, it is highly recommended that you start from a new conda environment using the following command:

conda create -n pyflowline_test

After activating the environment with:

conda activate pyflowline_test

You can then install it with:

conda install -c conda-forge pyflowline

3.2.2. Option B

In this option, you have the opportunity to manually install the nightly version.

First, you need to clone the PyFlowline package from GitHub directly.

Navigate into the downloaded folder and manually install the package using:

python setup.py install

The following dependency packages will be installed during the process.

	numpy

	gdal

	netCDF4

3.2.3. Visualization

PyFlowline only provides experimental support for visualization through the optional matplotlib and cartopy packages.

You need to manually speicify these packages during the installation process

conda install -c conda-forge pyflowline matplotlib cartopy

or install manually after the installation of PyFlowline:

conda install -c conda-forge matplotlib cartopy

4. Data model

4.1. Basic

River networks are represented using three basic elements: vertex, edge, and flowline.

[image: Basic elements]
Within PyFlowline, these three elements are combined with several other data structures.

[image: PyFlowline structure.]
This figure illustrates a domain containing two watersheds/basins. Each basin has an outlet. Within each basin, there are several subbasins and confluences. The lower right is a zoom-in view of a flowline.

4.2. Spatial references and computational geometry

All the internal data elements use the geographic coordinate system (GCS).

All the computational geometry algorithms are based on GCS:

	
	Input

	Output

	Algorithm

	Location

	vertex(lon, lat)

	vertex(lon, lat)

	

	Distance

	vertex A, B

	Distance (m)

	Great circle

	Area

	vertex A, B, C, … D

	Distance (m2)

	Spheric area

4.3. File I/O

4.3.1. Configuration files

PyFlowline uses two JSON-format configuration files to manage all input information, where major model input parameters and paths are specified. These configuration files have a parent-child relationship:

	The parent configuration file stores parameters for the entire domain.

	The child configuration file stores parameters for each individual watershed.

These files serve as the entry point for setting up and running a PyFlowline case. They can exist wherever the user prefers, but PyFlowline uses the paths specified in these files to locate model inputs and write outputs. Model inputs, outputs, and a recommended directory structure are described in the following two sections.

To create a new PyFlowline case, pass the full path to the parent configuration file to the pyflowline_read_model_configuration_file function. This will return a PyFlowline object configured with the values from the file, and it can be used to run the model. See the example notebooks for a demonstration.

Note that the “parent” configuration file contains one block of parameter-value pairs that apply to the entire domain. In contrast, the “child” configuration file contains one block of parameter-value pairs for each watershed. A domain with a single watershed will have a single block in the “child” configuration file, while a domain with multiple watersheds will have multiple blocks.

An example parent JSON file for the Susquehanna River Basin domain (with <domain_name> as “susquehanna”) is provided below:

{
 "sFilename_model_configuration": "/full/path/to/pyflowline/pyflowline/config/hexwatershed_susquehanna_mpas.json",
 "sWorkspace_data": "/full/path/to/input/data",
 "sWorkspace_output": "/full/path/to/output",
 "sWorkspace_project": "/hexwatershed/susquehanna",
 "sWorkspace_bin": "/full/path/to/bin",
 "sRegion": "susquehanna",
 "sModel": "pyflowline",
 "sJob": "hex",
 "iFlag_standalone": 1,
 "iFlag_create_mesh": 1,
 "iFlag_mesh_boundary": 1,
 "iFlag_save_mesh" :1 ,
 "iFlag_simplification": 1,
 "iFlag_intersect": 1,
 "iFlag_flowline":1,
 "iFlag_use_mesh_dem":1,
 "iFlag_global": 0,
 "iFlag_multiple_outlet": 0,
 "iFlag_rotation": 0,
 "iFlag_mesh_boundary": 0,
 "iCase_index": 1,
 "iMesh_type": 4,
 "dLongitude_left": -79,
 "dLongitude_right": -74.5,
 "dLatitude_bot": 39.20,
 "dLatitude_top": 42.8,
 "dResolution_degree": 5000,
 "dResolution_meter": 5000,
 "sDate": "20220110",
 "sMesh_type": "mpas",
 "sFilename_spatial_reference": "/full/path/to/pyhexwatershed_icom/data/susquehanna/input/boundary_proj_buff.shp",
 "sFilename_dem": "/full/path/to/pyhexwatershed_icom/data/susquehanna/input/dem_buff_ext.tif",
 "sFilename_mesh_netcdf": "/full/path/to/lnd_cull_mesh.nc",
 "sFilename_mesh_boundary": "/full/path/to/pyflowline/data/susquehanna/input/boundary_wgs.geojson",
 "sFilename_basins": "/full/path/to/pyflowline/examples/susquehanna/pyflowline_susquehanna_basins.json"
}

	Parameter

	Data type

	Usage

	Default value

	Note

	sFilename_model_configuration

	string

	The filename of the configuration file

	None

	Automatically generated

	sWorkspace_data

	string

	The workspace for data

	None

	Unused

	sWorkspace_output

	string

	The output workspace

	None

	The output folder

	sWorkspace_project

	string

	The project workspace

	None

	Unused

	sWorkspace_bin

	string

	The workspace for binary executable

	None

	Reserved for HexWatershed model

	sRegion

	string

	Study region (domain name)

	None

	None

	sModel

	string

	Model name

	pyflowline

	None

	sJob

	string

	HPC batch job name

	pyflowline

	None

	iFlag_standalone

	int

	Flag to run pyflowlone standalone

	1

	0 when called by hexwatershed

	iFlag_mesh_boundary

	int

	Flag to use mesh boundary file

	1

	If 0, use dLongitude/Latitude_left/right

	iFlag_create_mesh

	int

	Flag to create mesh

	1

	None

	iFlag_save_mesh

	int

	Flag to save mesh

	1

	None

	iFlag_simplification

	int

	Flag to simplification

	1

	None

	iFlag_intersect

	int

	Flag to intersect

	1

	None

	iFlag_flowline

	int

	Flag for flowline

	1

	None

	iFlag_use_mesh_dem

	int

	Flag to use DEM data

	0

	Not used

	iFlag_global

	int

	Flag to run on global scale

	0

	None

	iFlag_multiple_outlet

	int

	Flag to run with multi-outlet

	0

	None

	iFlag_rotation

	int

	Flag for hexagon rotation

	0

	None

	iCase_index

	int

	Index of case

	1

	None

	iMesh_type

	int

	Type of mesh

	1

	None

	dLongitude_left

	float

	Boundary

	-180

	None

	dLongitude_right

	float

	Boundary

	+180

	None

	dLatitude_bot

	float

	Boundary

	-90

	None

	dLatitude_top

	float

	Boundary

	+90

	None

	dResolution_degree

	float

	Resolution in degree

	1

	None

	dResolution_meter

	float

	Resolution in meter

	5000

	None

	sDate

	string

	Date of simulation

	None

	None

	sMesh_type

	string

	Mesh type

	None

	None

	sFilename_spatial_reference

	string

	Spatial reference

	None

	None

	sFilename_dem

	string

	DEM file

	None

	Reserved for HexWatershed model

	sFilename_mesh_netcdf

	string

	Netcdf mesh file

	None

	

	sFilename_mesh_boundary

	string

	Domain boundary file

	None

	Required if iFlag_mesh_boundary = 0

	sFilename_basins

	string

	Filename of child JSON file

	None

	None

An example child JSON file is provided below:

[
{
 "dLatitude_outlet_degree": 39.4620,
 "dLongitude_outlet_degree": -76.0093,
 "dAccumulation_threshold": 100000,
 "dThreshold_small_river": 10000,
 "iFlag_dam": 0,
 "iFlag_debug":1,
 "iFlag_disconnected": 0,
 "lBasinID": 1,
 "sFilename_dam": "/full/path/to/hexwatershed/susquehanna/auxiliary/dams.csv",
 "sFilename_flowline_filter": "/full/path/to/pyflowline/data/susquehanna/input/flowline.geojson",
 "sFilename_flowline_raw": "/full/path/to/hexwatershed/susquehanna/vector/hydrology/allflowline.shp",
 "sFilename_flowline_topo": "/full/path/to/hexwatershed/susquehanna/auxiliary/flowline.csv"
}
]

	Parameter

	Data type

	Usage

	Default value

	Note

	dLatitude_outlet_degree

	float

	The latitude of outlet

	None

	

	dLongitude_outlet_degree

	float

	The longitude of outlet

	
	

	dAccumulation_threshold

	float

	The flow accumulation threshold

	
	

	dThreshold_small_river

	float

	The small river threshold

	
	

	iFlag_dam

	int

	Flag for dam burning

	0

	

	iFlag_debug

	int

	Flag to turn on debug info

	0

	

	iFlag_disconnected

	int

	Flag for disconnected flowline

	0

	

	lBasinID

	int

	Basin/watershed ID

	0

	

	sFilename_dam

	string

	Filename of dam file

	1

	Only used for dam burning

	sFilename_flowline_filter

	string

	Filename of original flowline file

	
	GeoJSON format

	sFilename_flowline_raw

	string

	Filename of flowline including dam

	
	Only used for dam burning

	sFilename_flowline_topo

	string

	Filename of dam topology

	
	Only used for dam burning

4.3.2. Inputs

The following recommended workspace structure and example input files are provided to run a PyFlowline simulation. Although the repo includes example configuration files in the examples/ directory, they can be placed wherever the user prefers, as long as the paths within them point to the correct locations for input (and output) data.

data
└── <domain_name>
 ├── input
 │ ├── boundary_wgs.geojson
 │ ├── flowline.geojson
 │ ├── pyflowline_<domain_name>_<meshtype>.json
 │ └── pyflowline_<domain_name>_basins.json
 └── output
 └── ...

4.3.3. Outputs

After running the PyFlowline simulation, the output workspace will be structured as follows:

data
└── <domain_name>
 ├── input
 │ ...
 └── output
 └── <pyflowline_casename>
 ├── 00000001
 │ ├── basin_info.json
 │ ├── confluence_conceptual_info.json
 │ ├── confluence_simplified_info.json
 │ ├── flowline_conceptual.json
 │ ├── flowline_conceptual_info.json
 │ ├── flowline_edge.json
 │ ├── flowline_filter.json
 │ ├── flowline_intersect_mesh.json
 │ ├── flowline_simplified.json
 │ ├── flowline_simplified_info.json
 │ └── vertex_simplified.json
 ├── 00000002
 │ ├── basin_info.json
 │ ├── confluence_conceptual_info.json
 │ └── ...
 ├── mpas.json
 ├── mpas_mesh_info.json
 ├── run_pyflowline.py
 ├── submit.job
 ├── stdout.out
 └── stderr.err

The sub-folders 00000001 et. al, are results for every watershed. Within each watershed sub-folder, there are both json and geojson model output files. The primary (and final) PyFlowline model-generated flowline is flowline_conceptual.json. This file is in the GEOJSON format, and can be viewed directly in QGIS or similar software. Other files that may be of particular interest to users include the model-generated mesh file mpas_mesh_info.json which contains a complete description of the model-generated mesh, and mpas.json which contains the same information in the GEOJSON format, and can be viewed directly in QGIS or similar software. In the <pyflowline_casename> root directory, three HPC-associated files submit.job, stdout.out, stderr.err are generated. The script run_pyflowline.py is the python script that was ran by the HPC job. If you are running on a local machine, you can run this script directly. The table below describes the output files.

	Filename

	Description

	basin_info.json

	Basin configuration information output file.

	confluence_conceptual_info.json

	Complete description of conceptual flowline confluence nodes.

	confluence_simplified_info.json

	Complete description of simplified flowline confluence nodes.

	flowline_conceptual.json

	Final modeled flowline in GEOJSON format.

	flowline_conceptual_info.json

	Final modeled flowline in JSON format.

	flowline_edge.json

	

	flowline_filter.json

	

	flowline_intersect_mesh.json

	Intermediate modeled flowline in GEOJSON format.

	flowline_simplified.json

	Intermediate modeled flowline in GEOJSON format.

	flowline_simplified_info.json

	Intermediate modeled flowline in JSON format.

	vertex_simplified.json

	Flowline vertex file in GEOJSON format.

	mpas.json

	Model generated mesh file in GEOJSON format. Contains complete mesh description.

	mpas_mesh_info.json

	Model generated mesh file in JSON format. Contains complete mesh description.

	run_pyflowline.py

	Python script that was run by the HPC job (can be run directly on a local machine).

	submit.job

	HPC associated file

	stdout.out

	HPC associated file

	stderr.err

	HPC associated file

5. Algorithm

5.1. Overview

A list of algorithms is implemented to carry out the following operations:

	Flowline simplification

	Mesh generation

	Topological relationship reconstruction

5.2. Flowline simplification

5.2.1. Dam associate flowline burning

(Optional)

Through a look-up table that links dams with their associated flowlines, this algorithm includes all the downstream flowlines of each dam into the flowline simplification process.

Currently, this algorithm does not include the upstream of a dam.

5.2.2. Flowline vertex extraction

The vertices that make up flowlines are used in several algorithms. Among them, a flowline’s starting and ending vertices also define the flowline type.

	If the starting vertex has no upstream, the flowline is a headwater.

	If the starting or ending vertex has only one upstream or downstream, it is a middle flowline and can be merged with others.

	If a starting vertex has more than one upstream vertices, it is a river confluence.

5.2.3. Split flowline

With all the flowlines and vertices, the algorithm split the flowlines into a minimal set that meets the following requirement:

	All flowlines’ starting and ending vertices are made up by the vertex loop-up table.

	No flowline has a middle vertex that belongs to the same look-up table.

5.2.4. Flow direction correction

Due to data quality issues, the existing flowlines may have incorrect flow directions, which lead to multiple downstream flow directions.
The corresponding node connection matrix has rows with multiple *1*s. This algorithm scans from the outlet vertex and searches reversely; once such a row is detected, the corresponding flow direction is reversed.

[image: Flow direction correction]

5.2.5. Remove small river

To simplify the river networks, small rivers with lengths less than the user-provided threshold are removed. This algorithm only applies to headwater and should be called multiple times to achieve desired performance.

(Optional)
When the dam burning is turned on, the dam-associated flowlines are always retained even if their lengths are less than the user-provided threshold.

5.2.6. Remove braided flowlines

A braided loop occurs when a vertex has more than one downstream, even after the flow direction correction. This algorithm removes these loops by only keeping the first detected downstream of any vertex.

[image: Before loop removal]
[image: After loop removal]

5.2.7. Flowline confluence extraction

This algorithm scans the whole network and defines the vertices that have more than one upstream flowline as river confluences.

5.2.8. Merge flowline

This algorithm merges flowlines, so there are only two types of flowlines:

	headwaters

	flowline between the confluences

If there are multiple flowlines within the same confluence bound, they are merged as one.

[image: Flowline merge]

5.2.9. Flowline confluence definition

After the flowlines are in the final format, the confluences are redefined using the same criteria as above.

5.2.10. Stream segment index

This algorithm defines the stream segment index using their topologic relationship..

5.2.11. Stream segment order

This algorithm defines the stream order based on the stream segment topology and the classic stream order, also called Hack’s stream order or Gravelius’ stream order method.

5.2.12. Split flowline by length

(Optional)

In some cases, it is desirable to impose a maximum flowline edge length so it can be used in other applications.
This algorithm divides such kinds of edges until they meet the requirement.

5.3. Mesh generation

PyFlowline provides several algorithms to generate structured meshes, including latitude-longitude, projected, hexagon, triangle meshes.

The hexagon mesh generator also provides an option for a 60-degree rotation (https://www.redblobgames.com/grids/hexagons/#basics).

PyFlowline uses the geographic coordinate system (GCS) exclusively for all the computational geometry, all the meshes are converted to the GCS system. See the hexagon mesh for an example.

5.3.1. Structured mesh

In general, the mesh generator creates mesh cells one by one in a pre-defined row-column order starting from the lower left corner. The generator calculates the locations of all vertices of each mesh cell. The coordinates will be converted back to GCS if the mesh is in PCS.

Usually, the domain’s boundary is defined in the configuration file, and the algorithm starts from the lower left.

5.3.1.1. Latitude-longitude mesh

	Coordinates of 4 vertices are calculated, then a cell is defined.

	Repeat until all cells are generated

5.3.1.2. Projected mesh

	Coordinates of 4 vertices are calculated and re-projected to GCS, then a cell is defined.

	Repeat until all cells are generated

5.3.1.3. Hexagon mesh

	Coordinates of 6 vertices are calculated and re-projected to GCS, then a cell is defined.

	Repeat until all cells are generated

5.3.1.4. Triangle mesh

	Coordinates of 3 vertices are calculated and re-projected to GCS, then a cell is defined.

	Repeat until all cells are generated

5.3.2. Unstructured mesh

PyFlowline does not provide unstructured mesh generations. Instead, the user should use third-party generators such as the JIGSAW to generate the mesh files. PyFlowline only provides algorithms to import these mesh files and convert them to PyFlowline-supported mesh data type.

5.3.2.1. MPAS

Supported by JIGSAW

5.3.2.2. TIN

Not yet supported

5.3.2.3. DGGrid

Not yet supported

5.4. Topological relationship reconstruction

5.4.1. Mesh and flowline intersection

This algorithm calls the GDAL (https://gdal.org/) APIs to intersect the mesh with the simplified river network. Each stream segment is broken into reaches.

5.4.2. Topological relationship reconstruction

After the intersection, this algorithm rebuilds the topologic relationship using the entrance and exit vertices of each reach to construct the reach-based or cell center-based river network.

5.4.3. Remove returning flowline

This algorithm simplifies the topology information for several unusual scenarios. For example, if a flowline leaves and reenters the same mesh cell through the same edge, this creates a loop in topology and will be simplified.

6. Application

6.1. Overview

An example is provided within the examples folder. This example contains a case study in the Susquehanna watershed with several python scripts (corresponding to four mesh types). For example, the MPAS mesh type-based case is explained here.

6.2. Model simulation

6.2.1. Step 1

The example run_simulation_mpas.py script import a few packages and functions.

import os, sys
from pathlib import Path
from os.path import realpath
from pyflowline.pyflowline_read_model_configuration_file import pyflowline_read_model_configuration_file

The pyflowline_read_model_configuration_file function reads in a JSON configuration file and loads all the necessary model parameters.

6.2.2. Step 2

The script sets up some paths, which should be adjusted based on a real case and your local directory structure.

sPath_parent = str(Path(__file__).parents[2]) # data is located two dir's up
sPath_data = realpath(sPath_parent + '/data/susquehanna')
sWorkspace_input = str(Path(sPath_data) / 'input')
sWorkspace_output= str(Path(sPath_data) / 'output')
sWorkspace_output= '/full/path/to/pyflowline/data/susquehanna/output'

6.2.3. Step 3

Check the configuration file:

sFilename_configuration_in = realpath(sPath_parent + '/examples/susquehanna/pyflowline_susquehanna_mpas.json')
if os.path.isfile(sFilename_configuration_in):
 pass
else:
 print('This configuration does not exist: ', sFilename_configuration_in)

6.2.4. Step 4

Set up case information and read the configuration file.

iCase_index = 17
Mesh = 'mpas'
Date='20220901'

oPyflowline = pyflowline_read_model_configuration_file(sFilename_configuration_in, \
 iCase_index_in=iCase_index, sDate_in=sDate)
oPyflowline.aBasin[0].dLatitude_outlet_degree=39.462000
oPyflowline.aBasin[0].dLongitude_outlet_degree=-76.009300

6.2.5. Step 5

Setup the model and run the three major steps.

oPyflowline.setup()
oPyflowline.flowline_simplification()
Cell = oPyflowline.mesh_generation()
oPyflowline.reconstruct_topological_relationship(aCell)

6.2.6. Step 6

Analyze and export the model outputs.

oPyflowline.analyze()
oPyflowline.evaluate()
oPyflowline.export()

6.2.7. Step 7

Optionally, the user can also visualize the model outputs using the following method.

aExtent_full = [-78.5,-75.5, 39.2,42.5]
sFilename = 'filtered_flowline.png'
oPyflowline._plot(sFilename, sVariable_in = 'flowline_filter', aExtent_in =aExtent_full)

sFilename = 'conceptual_flowline_with_mesh.png'
oPyflowline._plot(sFilename, iFlag_title=1 ,sVariable_in='overlap', aExtent_in =aExtent_full)

7. Visualization

The built-in visualization feature is experimental. Currently, users are recommended to use third-party tools such as QGIS to visualize the GEOJSON outputs.

8. References

	Liao. C. Cooper, M (2022) Pyflowline: a mesh-independent river network generator for hydrologic models. Zenodo.

https://doi.org/10.5281/zenodo.6407299

9. History

	2020-10-01: Design

10. Authors

	Chang Liao (Pacific Northwest National Laboratory)

	Matt G Cooper (Pacific Northwest National Laboratory)

11. Support

Support is provided through Github issue(https://github.com/changliao1025/pyflowline/issues).

12. Contribution

PyFlowline was developed and maintained by

	Chang Liao (Pacific Northwest National Laboratory)

13. Frequently Asked Questions

	Why my conda cannot create environment?

Turn off the VPN or bypass it.

	Why import GDAL failed?

Consider using the conda-forge channel.

	proj related issue https://github.com/OSGeo/gdal/issues/1546,

Make sure you correctly set up the PROJ_LIB

Because the GDAL library is used by this project and the proj library is often not configured correctly automatically.
On Linux or Mac, you can set it up using the .bash_profile such as:

Anaconda:

export PROJ_LIB=/people/user/.conda/envs/hexwatershed/share/proj

export PROJ_LIB=$HOME/opt/anaconda3/envs/pyflowline/share/proj

Miniconda:

export PROJ_LIB=/opt/miniconda3/envs/hexwatershed/share/proj

	I am getting errors using the plot functions

If you receive an error related to GeoAxesSubplot, make sure you have cartopy version 0.21.0 installed in your environment. Optionally, downgrade matplotlib to 3.5.2.

	What if my model doesn’t produce the correct or expected answer?

Answer: There are several hidden assumptions within the workflow. For example, if you provide the DEM and river network for two different regions, the program won’t be able to tell you that. A visual inspection of your data is important.

Optionally, you can turn on the iFlag_debug option in the configuration file to output the intermediate files.

14. API Reference

14.1. Class

14.1.1. Basic elements

	
pyflowline.classes.vertex.pyvertex : public object

	The vertex class

Args:
 object (_type_): None

Returns:
 pyvertex: A vertex object

Public Functions

	
__init__(self, aParameter)

	Initilize a vertex object

Args:
 aParameter (dict): A dictionary parameters

	
toNvector(self)

	Note: replicated in LatLon_NvectorEllipsoidal

Returns:
 pynvector: A nvector object

	
__eq__(self, other)

	Check whether two vertices are equivalent

Args:
 other (pyvertex): The other vertex

Returns:
 int: 1 if equivalent, 0 if not

	
__ne__(self, other)

	Check whether two vertices are equivalent

Args:
 other (pyvertex): The other vertex

Returns:
 int: 0 if equivalent, 1 if not

	
calculate_distance(self, other)

	Calculate the distance between two vertices

Args:
 other (pyvertex): The other vertex

Returns:
 float: The great circle distance

	
tojson(self)

	Convert a vecter object to a json string

Returns:
 json str: A json string

	
pyflowline.classes.edge.pyedge : public object

	The pyedge class

Args:
 object (object): None

Returns:
 pyedge: A edge object

Public Functions

	
__init__(self, pVertex_start_in, pVertex_end_in)

	Initilize a pyedge object

Args:
 pVertex_start_in (pyvertex): The starting vertex
 pVertex_end_in (pyvertex): The ending vertex

	
calculate_length(self)

	Calcualate the length of the edge

Returns:
 float: The length of the edge

	
check_shared_vertex(self, other)

	Check whether two edges are sharing the same vertex

Args:
 other (pyedge): The other edge object to be checked

Returns:
 int: Flag, 1: shared; 0: non-sharing

	
check_upstream(self, other)

	Check whether another edge is the upstream of current edge

Args:
 other (pyedge): The other edge object to be checked

Returns:
 int: Flag, 1: upstream; 0: non-upstream

	
check_downstream(self, other)

	Check whether another edge is the downstream of current edge

Args:
 other (pyedge): The other edge object to be checked

Returns:
 int: Flag, 1: downstream; 0: non-downstream

	
split_by_length(self, dLength_in)

	Split an edge using the threshold

Args:
 dLength_in (float): The length threshold

Returns:
 list [pyedge]: A list of edge objects, length of 1 if it meets the requirement

	
reverse(self)

	Reverse an edge

	
is_overlap(self, pEdge_in)

	Check if two edges overlap each other

Args:
 pEdge_in (pyedge): The other edge to be checked

Returns:
 int: 1 if overlap; 0 if not

	
check_vertex_on_edge(self, pVertex_in)

	Check if a vertex on an edge

Args:
 pVertex_in (pyvertex): The vertex to be checked

Returns:
 tuple[int, float, float]: 1 if it is on; 0 if not. Length and distance are calculated if on.

	
__eq__(self, other)

	Check if two edges are equivalent

Args:
 other (pyedge): The other edge
 how about direction?

Returns:
 int: 1 if equivalent; 0 if not

	
__ne__(self, other)

	Check if two edges are equivalent

Args:
 other (pyedge): The other edge

Returns:
 int: 0 if equivalent; 1 if not

	
tojson(self)

	Convert an edge object to a json string

Returns:
 json str: A json string

	
pyflowline.classes.flowline.pyflowline : public object

	The pyflowline class

Args:
 object (object): None

Returns:
 pyflowline: The flowline object

Public Functions

	
__init__(self, aEdge)

	Initilize a flowline object

Args:
 aEdge (list [pyedge]): A list of edge objects

	
calculate_length(self)

	Calcualte the length

Returns:
 float: The length of the flowline

	
check_upstream(self, other)

	Check whether another flowline is upstream or not

Args:
 other (pyflowline): The other flowline

Returns:
 int: 1 if it is, 0 if not

	
check_downstream(self, other)

	Check whether another flowline is downstream or not

Args:
 other (pyflowline): The other flowline

Returns:
 int: 1 if it is, 0 if not

	
reverse(self)

	Reverse a flowline

	
merge_upstream(self, other)

	Merge two flowlines as one

Args:
 other (pyflowline): The other flowline

Returns:
 pyflowline: The merged flowline

	
split_by_length(self, dDistance)

	Split a flowline using the length threshold

Args:
 dDistance (float): The length threshold for each edge

Returns:
 pyflowline: The updated flowline

	
calculate_flowline_sinuosity(self)

	Calculate the sinuosoty of a flowline

	
__eq__(self, other)

	Check whether two flowline are equivalent

Args:
 other (pyflowline): The other flowline

Returns:
 int: 1 if equivalent, 0 if not

	
__ne__(self, other)

	Check whether two flowline are equivalent

Args:
 other (pyflowline): The other flowline

Returns:
 int: 0 if equivalent, 1 if not

	
tojson(self)

	Convert a pyflowline object to a json string

Returns:
 json str: A json string

14.1.2. Mesh cell

	
pyflowline.classes.hexagon.pyhexagon : public pyflowline.classes.cell.pycell

	The hexagon cell class

Args:
 pycell (obj): None

Returns:
 pyhexagon: A hexagon object

Public Functions

	
__init__(self, dLon, dLat, aEdge, aVertex)

	Initilize a hexagon cell object

Args:
 dLon (float): The longitude of center
 dLat (float): The latitude of center
 aEdge (list [pyedge]): A list of edges that define the hexagon
 aVertex (list [pyvertex]): A list of vertices the define the hexagon

	
has_this_edge(self, pEdge_in)

	Check whether the hexagon contains an edge

Args:
 pEdge_in (pyedge): The edge to be checked

Returns:
 int: 1 if found, 0 if not

	
which_edge_cross_this_vertex(self, pVertex_in)

	Find which edge overlap with a vertex

Args:
 pVertex_in (pyvertex): The vertex to be checked

Returns:
 tuple [int, pyedge]: 1 if found, with the edge object; 0 if not found

	
calculate_cell_area(self)

	Calculate the area of the hexagon cell

Returns:
 float: The area in m2

	
calculate_edge_length(self)

	Calculate the effective length of the hexagon cell

Returns:
 float: The effective length

	
share_edge(self, other)

	Check whether a hexagon shares an edge with another hexagon

Args:
 other (pyhexagon): The other hexagon

Returns:
 int: 1 if share, 0 if not

	
tojson(self)

	Convert a hexagon object to a json string

Returns:
 json str: A json string

	
pyflowline.classes.square.pysquare : public pyflowline.classes.cell.pycell

	The square cell class

Args:
 pycell (_type_): None

Returns:
 pysquare: A square cell object

Public Functions

	
__init__(self, dLon, dLat, aEdge, aVertex)

	Initilize a square cell object

Args:
 dLon (float): The longitude of center
 dLat (float): The latitude of center
 aEdge (list [pyedge]): A list of edges that define the square cell
 aVertex (list [pyvertex]): A list of vertices the define the square cell

	
has_this_edge(self, pEdge_in)

	Check whether the square contains an edge

Args:
 pEdge_in (pyedge): The edge to be checked

Returns:
 int: 1 if found, 0 if not

	
which_edge_cross_this_vertex(self, pVertex_in)

	Find which edge overlap with a vertex

Args:
 pVertex_in (pyvertex): The vertex to be checked

Returns:
 tuple [int, pyedge]: 1 if found, with the edge object; 0 if not found

	
calculate_cell_area(self)

	Calculate the area of the hexagon cell

Returns:
 float: The area in m2

	
calculate_edge_length(self)

	Calculate the effective length of the square cell

Returns:
 float: The effective length

	
share_edge(self, other)

	Check whether a square cell shares an edge with another cell

Args:
 other (pysquare): The other cell

Returns:
 int: 1 if share, 0 if not

	
tojson(self)

	Convert a square object to a json string

Returns:
 json str: A json string

	
pyflowline.classes.latlon.pylatlon : public pyflowline.classes.cell.pycell

	The latlon cell class

Args:
 pycell (obj): None

Returns:
 pylatlon: A latlon cell object

Public Functions

	
__init__(self, dLon, dLat, aEdge, aVertex)

	Initilize a latlon cell object

Args:
 dLon (float): The longitude of center
 dLat (float): The latitude of center
 aEdge (list [pyedge]): A list of edges that define the latlon cell
 aVertex (list [pyvertex]): A list of vertices the define the latlon

	
has_this_edge(self, pEdge_in)

	Check whether the latlon contains an edge

Args:
 pEdge_in (pyedge): The edge to be checked

Returns:
 int: 1 if found, 0 if not

	
which_edge_cross_this_vertex(self, pVertex_in)

	Find which edge overlap with a vertex

Args:
 pVertex_in (pyvertex): The vertex to be checked

Returns:
 tuple [int, pyedge]: 1 if found, with the edge object; 0 if not found

	
calculate_cell_area(self)

	Calculate the area of the latlon cell

Returns:
 float: The area in m2

	
calculate_edge_length(self)

	Calculate the effective length of the latlon cell

Returns:
 float: The effective length

	
share_edge(self, other)

	Check whether a latlon shares an edge with another latlon

Args:
 other (pylatlon): The other latlon cell

Returns:
 int: 1 if share, 0 if not

	
tojson(self)

	Convert a latlon object to a json string

Returns:
 json str: A json string

	
pyflowline.classes.mpas.pympas : public pyflowline.classes.cell.pycell

	The MPAS cell class

Args:
 pycell (object): None

Returns:
 pympas: A mpas cell object

Public Functions

	
__init__(self, dLon, dLat, aEdge, aVertex)

	Initilize a mpas cell object

Args:
 dLon (float): The longitude of center
 dLat (float): The latitude of center
 aEdge (list [pyedge]): A list of edges that define the hexagon
 aVertex (list [pyvertex]): A list of vertices the define the hexagon

	
has_this_edge(self, pEdge_in)

	Check whether the cell contains an edge

Args:
 pEdge_in (pyedge): the to be checked edge

Returns:
 int: 1 if contains; or else 0

	
which_edge_cross_this_vertex(self, pVertex_in)

	When a flowline intersects with a cell, this function finds out which edge is intersected

Args:
 pVertex_in (pyvertex): the intersected vertex

Returns:
 tuple: (1, edge) if contains; or else (0, None)

	
calculate_cell_area(self)

	Calculate the area of a cell, this function is not used for mpas cell

Returns:
 float: cell area

	
calculate_edge_length(self)

	Calculate the effective cell length/resolution

Returns:
 float: effective cell length/resolution

	
share_edge(self, other)

	Check if two cells share an edge

Args:
 other (pympas): the other cell

Returns:
 int: 1 if shared, 0 if not

	
tojson(self)

	Convert a cell into a json string

Returns:
 json str: A json string

14.1.3. Others

	
pyflowline.classes.basin.pybasin : public object

	Basin class

Args:
 (object): None

Returns:
 None: A basin object

Public Functions

	
__init__(self, aParameter)

	Initialize the basin class object

Args:
 aParameter (dict): Dictionary for parameters

	
basin_flowline_simplification(self)

	Run the basin flowline simplification

Returns:
 list [pyflowline]: A list of simplified flowline

	
basin_reconstruct_topological_relationship(self, iMesh_type, sFilename_mesh)

	Run the basin topologic relationship reconstruction

Args:
 iMesh_type (int): Mesh type
 sFilename_mesh (str): Filename of the geojson mesh

Returns:
 list [pyflowline]: A list of intersected cells

	
basin_build_confluence(self, aFlowline_basin_in, aVertex_confluence_in)

	Build the conflence

Args:
 aFlowline_basin_in (list [pyflowline]): A list of flowlines in this basin
 aVertex_confluence_in (list [pyconfluence]): A list of vertices in this basin

Returns:
 list [pyconfluence]: A list of confluences in this basin

	
basin_analyze(self)

	Analyze the basin results including length, sinuosity, and breaching angle

	
basin_export(self)

	Export the basin outputs in json format

	
basin_export_flowline(self, aFlowline_in, sFilename_json_in, iFlag_projected_in=None, pSpatial_reference_in=None)

	Export the basin flowline to geojson

Args:
 aFlowline_in (list [pyflowline]): A list of flowlines
 sFilename_json_in (str): The output json filename
 iFlag_projected_in (int, optional): Flag if re-projection is needed. Defaults to None.
 pSpatial_reference_in (object, optional): The spatial reference if re-projection is needed. Defaults to None.

	
basin_export_basin_info_to_json(self)

	Export the basin basin object to json

	
basin_export_flowline_info_to_json(self)

	Export the flowline object to json

	
basin_export_confluence_info_to_json(self)

	Export the confluence object to json

	
tojson(self)

	Export the basin object to json

Returns:
 json str: A json string

	
basin_export_config_to_json(self, sFilename_output_in=None)

	Export the basin object to json using the encoder

Args:
 sFilename_output_in (str, optional): The json filename. Defaults to None.

	
basin_convert_flowline_to_geojson(self)

	Convert the flowline to geojson

	
basin_calculate_flowline_length(self, aFlowline_in)

	Calculate the length of flowlines

Args:
 aFlowline_in (list [pyflowline]): A list of flowlines

Returns:
 float: The total length of all flowlines

	
basin_calculate_river_sinuosity(self)

	Calcualte the the river sinuosity

	
basin_calculate_confluence_branching_angle(self)

	Calcualte the the river confluence branching angle

	
basin_evaluate(self, iMesh_type, sMesh_type)

	Evaluate the model performance

Args:
 iMesh_type (int): The mesh type
 sMesh_type (str): The mesh type

	
basin_evaluate_area_of_difference(self, iMesh_type, sMesh_type)

	Evaluate the model performance using area of difference

Args:
 iMesh_type (int): The mesh type
 sMesh_type (str): The mesh type

	
pyflowline.classes.pycase.flowlinecase : public object

	The flowline case class

Args:
 object (obj): None

Returns:
 flowlinecase: A flowlinecase object

Public Functions

	
__init__(self, aConfig_in, iFlag_standalone_in=None, sModel_in=None, sDate_in=None, sWorkspace_output_in=None)

	Initialize a flowlinecase object

Args:
 aConfig_in (dict): A dictionary of parameters
 iFlag_standalone_in (int, optional): Flag for whether run the case standalone. Defaults to None.
 sModel_in (str, optional): The model name. Defaults to None.
 sDate_in (str, optional): The case date. Defaults to None.
 sWorkspace_output_in (str, optional): The output workspace. Defaults to None.

	
pyflowline_mesh_generation(self, iFlag_antarctic_in=None)

	The mesh generation operation

Returns:
 list [pycell]: A list of cell object

	
pyflowline_reconstruct_topological_relationship(self)

	The topological relationship reconstruction operation

Args:
 aCell_raw (list [pycell]): A list of intersected cell objects

Returns:
 tuple [list [pycell], list [pyflowline], list [long]]: A list of cells, flowlines, and outlet cell IDs.

	
pyflowline_merge_cell_info(self, aCell_raw)

	Merge cell information after reconstruction

Args:
 aCell_raw (list [pycell]): The original cell information that contains neighbor definition
 This information is defined in the mesh generation function, so mesh generation must be run.

Returns:
 list [pycell]: The updated list of cell objects.

	
pyflowline_analyze(self)

	Analyze the domain results for every watershed

	
pyflowline_setup(self)

	Set up the flowlinecase

	
pyflowline_run(self)

	Run the flowlinecase simulation

Returns:
 list: A list of cell objects

	
pyflowline_evaluate(self)

	Evaluate the model performance

	
pyflowline_export(self)

	Export the model outputs

	
pyflowline_export_mesh_info_to_json(self)

	Export the mesh information to a json file

	
tojson(self)

	Convert the flowline case object to a json string

Returns:
 json str: A json string

	
pyflowline_print(self)

	Print the flowline case object

	
pyflowline_export_config_to_json(self, sFilename_output_in=None)

	Export the configuration to a json file

Args:
 sFilename_output_in (str, optional): The json filename. Defaults to None.

	
pyflowline_export_basin_config_to_json(self, sFilename_output_in=None)

	Export the member basin configuration to a json file

Args:
 sFilename_output_in (str, optional): The json filename. Defaults to None.

	
class pyconfluence

	The pyconfluence class
Returns:
 object: A confluence object

Public Functions

	
__init__(self, pVertex_center, aFlowline_upstream_in, pFlowline_downstream_in)

	Initialize a pyconfluence object

Args:
 pVertex_center (pyvertex): The center vertex
 aFlowline_upstream_in (list [pyflowline]): A list of upstream flowlines
 pFlowline_downstream_in (pyflowline): The downstream flowline

	
calculate_branching_angle(self)

	Calcualte the confluence branching angle (https://www.pnas.org/doi/10.1073/pnas.1215218109)

Returns:
 float: The branching angle in degree

	
tojson(self)

	Convert a pyconfluence object to json

Returns:
 json str: A json string

	
pyflowline.classes.link.pycelllink : public object

	The cell link class

Args:
 object (obj): None

Returns:
 pycelllink: A link object

Public Functions

	
__init__(self, pCell_start_in, pCell_end_in, pEdge_link_in)

	Initilize a link object

Args:
 pCell_start_in (pycell): The starting cell object
 pCell_end_in (pycell): The ending cell object
 pEdge_link_in (pyedge): An edge object that links two cells

	
tojson(self)

	Convert a cell link object to a json string

Returns:
 json str: A json string

Glossary

Structured mesh

In PyFlowline, structured mesh refers to meshes that have a repeating pattern or structure.

The following meshes are considered as structured:

	Projected raster meshes (e.g. 100m by 100m)

	GCS-based rectangle meshes (e.g. 0.5 degree by 0.5 degree)

	Hexagon meshes (e.g. 100m by edge)

	DGGS meshes (e.g., DGGrid meshes)

Unstructured mesh

In PyFlowline, unstructured mesh refers to meshes that don’t have a repeating pattern or structure and the cell size varies from cell to cell.

The following meshes are considered as unstructured:

	Model for Prediction Across Scales (MPAS) meshes

	Triangulated irregular network (TIN) meshes

Great circle

In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere’s center point.

DGGS

A discrete global grid (DGG) is a mosaic that covers the entire Earth’s surface. Mathematically it is a space partitioning: it consists of a set of non-empty regions that form a partition of the Earth’s surface. In a usual grid-modeling strategy, to simplify position calculations, each region is represented by a point, abstracting the grid as a set of region-points. Each region or region-point in the grid is called a cell.

TIN

In computer graphics, a triangulated irregular network (TIN) is a representation of a continuous surface consisting entirely of triangular facets (a triangle mesh), used mainly as Discrete Global Grid in primary elevation modeling.

MPAS

Model for Prediction Across Scales.

Index

 _
 | B
 | C
 | H
 | I
 | M
 | P
 | R
 | S
 | T
 | W

_

 	
 	
 __eq__()

 	built-in function, [1], [2]

 	
 __init__()

 	built-in function, [1], [2], [3], [4], [5], [6], [7], [8], [9]

 	
 	
 __ne__()

 	built-in function, [1], [2]

B

 	
 	
 basin_analyze()

 	built-in function

 	
 basin_build_confluence()

 	built-in function

 	
 basin_calculate_confluence_branching_angle()

 	built-in function

 	
 basin_calculate_flowline_length()

 	built-in function

 	
 basin_calculate_river_sinuosity()

 	built-in function

 	
 basin_convert_flowline_to_geojson()

 	built-in function

 	
 basin_evaluate()

 	built-in function

 	
 basin_evaluate_area_of_difference()

 	built-in function

 	
 basin_export()

 	built-in function

 	
 basin_export_basin_info_to_json()

 	built-in function

 	
 basin_export_config_to_json()

 	built-in function

 	
 basin_export_confluence_info_to_json()

 	built-in function

 	
 basin_export_flowline()

 	built-in function

 	
 basin_export_flowline_info_to_json()

 	built-in function

 	
 basin_flowline_simplification()

 	built-in function

 	
 basin_reconstruct_topological_relationship()

 	built-in function

 	
 built-in function

 	__eq__(), [1], [2]

 	__init__(), [1], [2], [3], [4], [5], [6], [7], [8], [9]

 	__ne__(), [1], [2]

 	basin_analyze()

 	basin_build_confluence()

 	basin_calculate_confluence_branching_angle()

 	basin_calculate_flowline_length()

 	basin_calculate_river_sinuosity()

 	basin_convert_flowline_to_geojson()

 	basin_evaluate()

 	basin_evaluate_area_of_difference()

 	basin_export()

 	basin_export_basin_info_to_json()

 	basin_export_config_to_json()

 	basin_export_confluence_info_to_json()

 	basin_export_flowline()

 	basin_export_flowline_info_to_json()

 	basin_flowline_simplification()

 	basin_reconstruct_topological_relationship()

 	calculate_cell_area(), [1], [2], [3]

 	calculate_distance()

 	calculate_edge_length(), [1], [2], [3]

 	calculate_flowline_sinuosity()

 	calculate_length(), [1]

 	check_downstream(), [1]

 	check_shared_vertex()

 	check_upstream(), [1]

 	check_vertex_on_edge()

 	has_this_edge(), [1], [2], [3]

 	is_overlap()

 	merge_upstream()

 	pyflowline.classes.confluence.pyconfluence.__init__()

 	pyflowline.classes.confluence.pyconfluence.calculate_branching_angle()

 	pyflowline.classes.confluence.pyconfluence.tojson()

 	pyflowline_analyze()

 	pyflowline_evaluate()

 	pyflowline_export()

 	pyflowline_export_basin_config_to_json()

 	pyflowline_export_config_to_json()

 	pyflowline_export_mesh_info_to_json()

 	pyflowline_merge_cell_info()

 	pyflowline_mesh_generation()

 	pyflowline_print()

 	pyflowline_reconstruct_topological_relationship()

 	pyflowline_run()

 	pyflowline_setup()

 	reverse(), [1]

 	share_edge(), [1], [2], [3]

 	split_by_length(), [1]

 	tojson(), [1], [2], [3], [4], [5], [6], [7], [8], [9]

 	toNvector()

 	which_edge_cross_this_vertex(), [1], [2], [3]

C

 	
 	
 calculate_cell_area()

 	built-in function, [1], [2], [3]

 	
 calculate_distance()

 	built-in function

 	
 calculate_edge_length()

 	built-in function, [1], [2], [3]

 	
 calculate_flowline_sinuosity()

 	built-in function

 	
 calculate_length()

 	built-in function, [1]

 	
 	
 check_downstream()

 	built-in function, [1]

 	
 check_shared_vertex()

 	built-in function

 	
 check_upstream()

 	built-in function, [1]

 	
 check_vertex_on_edge()

 	built-in function

H

 	
 	
 has_this_edge()

 	built-in function, [1], [2], [3]

I

 	
 	
 is_overlap()

 	built-in function

M

 	
 	
 merge_upstream()

 	built-in function

P

 	
 	pyflowline.classes.confluence.pyconfluence (built-in class)

 	
 pyflowline.classes.confluence.pyconfluence.__init__()

 	built-in function

 	
 pyflowline.classes.confluence.pyconfluence.calculate_branching_angle()

 	built-in function

 	
 pyflowline.classes.confluence.pyconfluence.tojson()

 	built-in function

 	
 pyflowline_analyze()

 	built-in function

 	
 pyflowline_evaluate()

 	built-in function

 	
 pyflowline_export()

 	built-in function

 	
 pyflowline_export_basin_config_to_json()

 	built-in function

 	
 	
 pyflowline_export_config_to_json()

 	built-in function

 	
 pyflowline_export_mesh_info_to_json()

 	built-in function

 	
 pyflowline_merge_cell_info()

 	built-in function

 	
 pyflowline_mesh_generation()

 	built-in function

 	
 pyflowline_print()

 	built-in function

 	
 pyflowline_reconstruct_topological_relationship()

 	built-in function

 	
 pyflowline_run()

 	built-in function

 	
 pyflowline_setup()

 	built-in function

R

 	
 	
 reverse()

 	built-in function, [1]

S

 	
 	
 share_edge()

 	built-in function, [1], [2], [3]

 	
 	
 split_by_length()

 	built-in function, [1]

T

 	
 	
 tojson()

 	built-in function, [1], [2], [3], [4], [5], [6], [7], [8], [9]

 	
 	
 toNvector()

 	built-in function

W

 	
 	
 which_edge_cross_this_vertex()

 	built-in function, [1], [2], [3]

 _images/after_loop.png

_images/basic_element.png
B A
° —_— E
E
Flowline
Vertex Edge vertex_start

x/longitude vertex_start vertex_end
y/latitude vertex_end aEdge
z length aVertex

A vertex object An edge object A flowline object

_images/merge_flowline.png

_images/structure_pyflowline.png
Definition of PyFlowiine elements

Domain

Watershed/Basin

Vertex

_images/before_loop.png

_images/flow_direction_matrix.png
—> Y (XY): Xflowsto. D D

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to pyflowline’s documentation!

 		
 What is PyFlowline?

 		
 Overview

 		
 Development

 		
 Objective

 		
 Target audience

 		
 Important notice

 		
 Quickstart

 		
 Installation

 		
 Overview

 		
 Requirements

 		
 Option A

 		
 Option B

 		
 Visualization

 		
 Data model

 		
 Basic

 		
 Spatial references and computational geometry

 		
 File I/O

 		
 Configuration files

 		
 Inputs

 		
 Outputs

 		
 Algorithm

 		
 Overview

 		
 Flowline simplification

 		
 Dam associate flowline burning

 		
 Flowline vertex extraction

 		
 Split flowline

 		
 Flow direction correction

 		
 Remove small river

 		
 Remove braided flowlines

 		
 Flowline confluence extraction

 		
 Merge flowline

 		
 Flowline confluence definition

 		
 Stream segment index

 		
 Stream segment order

 		
 Split flowline by length

 		
 Mesh generation

 		
 Structured mesh

 		
 Unstructured mesh

 		
 Topological relationship reconstruction

 		
 Mesh and flowline intersection

 		
 Topological relationship reconstruction

 		
 Remove returning flowline

 		
 Application

 		
 Overview

 		
 Model simulation

 		
 Step 1

 		
 Step 2

 		
 Step 3

 		
 Step 4

 		
 Step 5

 		
 Step 6

 		
 Step 7

 		
 Visualization

 		
 References

 		
 History

 		
 Authors

 		
 Support

 		
 Contribution

 		
 Frequently Asked Questions

 		
 API Reference

 		
 Class

 		
 Basic elements

 		
 Mesh cell

 		
 Others

 		
 Glossary

 		
 Structured mesh

 		
 Unstructured mesh

 		
 Great circle

 		
 DGGS

 		
 TIN

 		
 MPAS

_static/minus.png

_static/plus.png

